Towards the direct measurement of bulk temperature in shock-compressed matter using inelastic X-ray scattering at XFELs

4th DyCoMaX Workshop Session VI: New instrumental opportunities

Adrien Descamps, a.descamps@qub.ac.uk

Acknowledgements

Queen's University Belfast:

E. E. McBride

SLAC National Accelerator laboratory:

- L. B. Fletcher
- C. Curry
- Z. Chen
- E. Galtier
- M. Gauthier
- N. Hartley
- J. Hastings
- J. B. Kim
- M. Mo
- B. Nagler
- B. Ofori-Okai
- C. Schoenwaelder
- S. H. Glenzer

University of Nevada at Reno:

T. G. White

European XFEL:

S. Goede Th. Tschentscher U. Zastrau

Oxford University:

- M. Oliver
- A. Rigby
- G. Gregori

Universität Rostock:

- B. Witte
- M. Schoerner
- R. Redmer

Sorbonne Université, UPMC, LULI:

F. Condamine

Università di Trento:

G. Monaco P. Sun

While pressure (density) is measured routinely, temperature remains challenging

Wang et al. Phys. Rev. B 94, 104102 (2016)

Commonly used techniques do not directly measure bulk temperature

One approach would be to use ultra-bright, ultra-short X-ray sources for high resolution X-ray spectroscopy.

X-ray Free Electron Lasers provide ultrashort, ultrabright Xray pulses

LCLS, MEC

European XFEL, HED

Inelastic X-ray scattering and the principle of detailed balance can be measured to measure the bulk temperature

The principle of detailed balance causes a temperature dependent asymmetry of the recorded spectra

UK Research

and Innovation

Experimental platform to measure high resolution inelastic Xray scattering

Without monochromator

With monochromator

Accurate temperature measurement was demonstrated on single crystal diamond at the HED endstation at EuXFEL

Descamps. A et al. Sci Rep 10, 14564 (2020)

The technique was demonstrated on a resistively heated sample as a proof of principle and was further expanded on laser compressed systems.

The study of noble gas in warm dense matter conditions is relevant for planetary science

McWilliams et al., PNAS, 112, 7925 (2015)

Argon is a prototypical system for understanding the behavior of noble element at extreme conditions.

High-resolution inelastic scattering on shock compressed Argon at MEC, LCLS

High resolution inelastic X-ray scattering requires the accumulation of many X-ray shots due to the small inelastic X-ray cross section.

- High repetition rate driver laser
- Self refreshing target using a cryogenic Argon jet

The temperature is obtained from the asymmetry of the spectrum

Time evolution of the high-resolution inelastic spectrum of laser compressed Argon

Fits obtained using Markov Chain Monte Carlo procedure

As a function of time delay, the spectrum becomes more asymmetric and narrower indicative of a cool down and a change in the mode dispersion relation.

The temperature is obtained from the asymmetry of the spectrum

Evolution of the measured temperature as a function of probe delay

The temperatures measured with the two analysers are consistent and indicate a cool of the system in the ~100 ps time scale.

UK Research and Innovation

The temperature is obtained from the asymmetry of the spectrum

Evolution of the measured temperature as a function of probe delay

Principle of detailed balance

$$\frac{S(-\hbar\omega,-Q)}{S(\hbar\omega,Q)} = e^{\hbar\omega/k_BT}$$

The asymmetry vanishes for "high" temperatures.

The temperature can also be measured in the single particle regime

Direct measurement of temperature of shock-compressed silicon using forward and backward scattering at MEC, LCLS

The energy resolution of the spectrometer improves with harder X-rays

Energy resolution and reflectivity of

The energy resolution of the spectrometer improves with harder X-rays

Descamps. A et al. J. Synchrotron Rad. 29, 931 (2022)

Measured instrument functions at LCLS on 50 µm PMMA

Inelastic spectrum from 10 μm Fe (at ambient conditions)

With an improved resolution, one can access materials relevant for planetary science and measure temperature.

The improved energy resolution comes at the cost of lower photometrics

Dipole Laser systems at the HED endstation EuXFEL DIPOLE-100X: 100 J, 2-15 ns, 10 Hz

MEC Upgrade at LCLS High rep-rate long pulse (expected): 200 J, 10 ns, 10 Hz

The coupling of hard X-rays Free Electron Lasers and high repetition rate drivers can help compensate for the lower photometrics at higher X-ray energies.

